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ABSTRACT:

In this paper, main challenges of underwater photogrammetry in shallow waters are described and analysed. The very short camera to
object distance in such cases, as well as buoyancy issues, wave effects and turbidity of the waters are challenges to be resolved.
Additionally, the major challenge of all, caustics, is addressed by a new approach for caustics removal (Forbes et al., 2018) which is
applied in order to investigate its performance in terms of SfM-MVS and 3D reconstruction results. In the proposed approach the
complex problem of removing caustics effects is addressed by classifying and then removing them from the images. We propose and
test a novel solution based on two small and easily trainable Convolutional Neural Networks (CNNs). Real ground truth for caustics
is not easily available. We show how a small set of synthetic data can be used to train the network and later transfer the learning to
real data with robustness to intra-class variation. The proposed solution results in caustic-free images which can be further used for

other tasks as may be needed.
1. INTRODUCTION
1.1 Motivation

Underwater 3D modelling and mapping techniques are based on
various systems and methodologies but the most accurate of
them are based on images as primary data. However, despite the
relative low cost of such methods in relation to others, they
suffer a major drawback; optical properties and illumination
conditions of water severely affect image quality. Light is
absorbed linearly to depth, resulting in a green-blue image due
to strong absorption in red wavelength. Therefore, the red
channel histogram has less information in comparison to green
and blue. In addition, water absorbs light energy and scatters
optical rays creating blurred images.

Even though the above phenomena affect RGB imagery in
every depth, when it comes to shallow waters, caustics, the
complex physical phenomena resulting from the projection of
light rays being reflected or refracted by a curved surface,
seems to be the main factor degrading image quality.

The implemented novel solution is based on two small and
easily trainable CNNs (Convolutional Neural Networks). This
approach demonstrates how a small set of synthetic data can be
used to train the network and later transfer the knowledge to
real data with robustness to intra-class variation. The
implemented solution results in caustic-free images, which can
be used for other applications. The above-mentioned approach
is applied in a real world underwater site with depth varying
from 0.5-1.5 meters. Imagery acquisition is characterized by
intense caustics effect, which in many cases made matching on
the initial imagery almost impossible. Moreover, in the
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following sections, the main challenges of underwater
photogrammetry in shallow waters are described and analysed.

1.2 Main challenges of underwater photogrammetry in
shallow waters

Underwater photogrammetry in shallow waters does not present
some of the major problems of its counterpart in deep waters
such as limited natural illumination, limited time etc., however,
various other issues may affect the acquisition and processing
stages.

1.2.1  During the acquisition

The definition of ‘shallow’ water is quite general. As a general
rule, when the object is up to 10 metres in depth in clear water,
water caustics by refraction effects may become a problem for
all passive optical sensors. Unlike deep water photogrammetric
approaches, where midday might be the best time for data
capturing due to brighter illumination conditions, when it comes
to shallow waters, the object to be surveyed needs strong
artificial illumination, or images taken under overcast
conditions, or with the sun low on horizon, in order to avoid
lighting artefacts on the seabed. Besides lighting issues, during
the acquisition phase, shallow water poses additional problems
for diver based photogrammetric acquisition because of greater
difficulty to control buoyancy (Bowens, 2011; Seinturier et al.,
2004, Menna et al., 2013). To that direction, the waves may
affect the stability of the diver and camera and change
significantly its path. Similar effects may appear in deep water
photogrammetric applications because of strong currents.

Usually in underwater photogrammetric tasks, a small camera-
to-object distance is selected to avoid absorption and achieve
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high resolution details and better accuracy. In shallow waters,
where archaeological finds are usually ruins, the small camera-
to-object distance (less than 1m) is not always desirable or
achievable. Really short camera-to-object distances lead to
significant increase of acquired data, since the camera footprint
on the seabed is reduced, the image scale is enlarged, thus
resulting in higher processing time and larger storage
requirement. In some extreme cases, of small depth there is not
enough space for the diver and the camera. To overcome this,
either cameras equipped with fisheye lenses are used, or two
media photogrammetric approaches are adopted such as the one
presented in Georgopoulos and Agrafiotis (2012). Other issues
affecting the shallow water coastal area is the turbidity caused
by the waves, floating objects etc.

1.2.2  During processing

The aforementioned problems during the acquisition phase, are
also affecting processing of the collected data. Due to the small
camera-to-object distance, a large amount of data has to be
processed, increasing cost and time in real life applications. The
above, together with caustics and illumination effects are
affecting image matching algorithms and are the main cause for
dissimilarities in the generated textures and orthoimages, if they
are the final results. Regarding the caustics effect, which is the
problem that is analysed in this paper, they throw off most of
the image matching algorithms, leading to less accurate
matches.

2. IMPLEMENTED APPROACH FOR CAUSTICS
REMOVAL

2.1 Related work

For many years, the computer graphics research community has
focused on the generation of caustics and as a result many
techniques have been proposed which generate photorealistic
results. At the same time only a few techniques have been
proposed for the removal of caustics from images and video in
the context of image enhancement. We provide a brief overview
of the most relevant work to caustics removal. Trabes et al
(Trabes et al, 2015) propose a technique which involves tuning
a filter for sunlight-deflickering of dynamically changing
underwater scenes. They employ a continuous parameter
optimization inside a basic filter, which provides feedback for
further improving the performance of the filter. Being an
optimization the filter's performance is highly sensitive to sub-
optimal parameters and in particular, the segmentation
parameter which is part of the objective function in the
optimization. A different approach was proposed in (Gracias et
al, 2008) where a mathematical solution was presented
involving the calculation of the temporal median between
images within a sequence. A strong assumption of this work, is
the fact that feature matching [Harris corner detection variant in
Gracias and Santos-Victor (2000)] is employed for the
formation of the sequence which makes this approach very
susceptible to the light variations in the images and in particular
caustics effects.
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The same authors later extend their work in (Shihavuddin et al,
2012) and propose an online sunflicker removal method which
treats caustics as a dynamic texture. As reported in the paper
this only works if the seabed or bottom surface is flat. Similar
approaches have also been proposed for general cases of
dehazing and descattering of images such as (Joshi et al, 2010),
(He et al, 2011), (Fattal et al, 2008).

In (Schechner et al, 2004) the authors propose a method based
on processing a number of consecutive frames. These frames
are analyzed by a non-linear algorithm which preserves
consistent image components while filtering out fluctuations.
Their proposed method however does not take into account the
camera motion which almost always leads to registration
inaccuracies.  Despite the innovative and  complex
aforementioned techniques, addressing caustic removal with
procedural methods requires that strong assumptions are made
on the many varying parameters involved e.g. scene rigidity,
camera motion, etc.

2.2 Convolutional Neural Networks Architecture

The proposed solution in (Forbes et al, 2018) consists of two
CNNs, SalienceNet and DeepCaustics and are described below.

SalienceNet: The input to SalienceNet is a rendered RGB
image containing caustics of an underwater scene. The network
operates on a batch of 32 images of size 400x400. Each pixel of
the output image takes a value in the range of [0,1],
corresponding to the confidence of caustics occurring at that
pixel. After extensive experimentation, we have concluded that
the network architecture with the optimal performance consists
of four hidden layers; the first two consisting of 3 and 5
convolution filters respectively, and the last two consisting of 5
and 1 de-convolution filters respectively. The filter sizes are
5x5, 3x3, 3x3, 5x5 in each layer respectively. This results in a
total of 2x(5x3x3) + (4x5x5) weight parameters and 8 + 6 bias
parameters, for a total of 204 parameters to be learned. After
each convolution/deconvolution in the network follows a ReLU
activation unit. Initially, sigmoid activation units were used in
the last layer to ensure that the final output is in the range [0,1]
however, our experiments have shown that ReLU units perform
better [they still map the output in the range [0,1] provided the
input data falls within the manifold learned] and, in addition
computing the gradients becomes more stable during back-
propagation i.e. no 'squashing' leading to vanishing gradients.
Adding more units and/or more layers has also been tested, but
with no noticeable improvements. Larger filter sizes were also
tested, but yielded blurry results. In order to get reasonable
results with an initial layer consisting of larger filters, more
layers with decreasing filter size were needed, but this required
a reduction in the size of the images in the data set, due to
memory constraints, and added no significant advantages. A
diagram of the network's architecture, chosen based on all the
experimental evaluations and considerations described above, is
shown in Figure 1.
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Figure 1. SalienceNet: a 4-layer CNN consisting of 2 convolutional layers followed by 2 deconvolutional layers. A ReLU activation
unit follows each [de-]convolution operation. All [de-]convolution kernels have size 3 x 3.
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DeepCaustics: The input to DeepCaustics is the pair of an
image containing caustics and the saliency map generated by
SalienceNet. The two are first coupled together into a 4-channel
RGBA format where the fourth channel contains the saliency
value for the corresponding pixel. The ground truth used for
training is a rendered caustic-free image corresponding to the
synthetic input images. The network operates on a batch of 16
images of size 400x400. The output of the network is a caustic-
free RGB image corresponding to the input. After extensive
experimentation, we have concluded that the network
architecture with the optimal performance consists of six hidden
layers; the first three consisting of 4, 2, and, 7 convolution
filters respectively, the last three consisting of 7, 2, and 3 de-

T
RGE \malt

400x400

‘Acivation Aciivation “Acivalion

maps maps maps
2@308xaga 2@396x396 T@394x304

]

input
Saliency Man

convolution filters respectively. The filter sizes are 3x3, 7x7,
3x3, 3x3, 7x7, 3x3 in each layer respectively. This results in a
total of (4x3x3) + 2x(2x7x7) + 2x(7x3x3) + (3x3x3) weight
parameters and (4 + 2x2 + 2x7 + 3) bias parameters, for a total
of 410 parameters to be learned.

Similarly to SalienceNet, after each [de-]Jconvolution in the
network follows a ReLU activation unit. Figure 2 shows the
architecture of the DeepCaustics network. The results of the
proposed method are the original images without color transfer
and histogram matching (Figure 3, middle column) and the
caustic-free images generated by DeepCaustics on the color
matched RGB images shown in Figure 3, right column.
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Figure 2. DeepCaustics: a 6-layer CNN consisting of 3 convolutional layers followed by 3 deconvolutional layers. A ReLU activation
unit follows each [de-]Jconvolution operation.

2.3 Dataset used

The imagery used presents a large variability in terms of colour,
frequency and shape of the caustics. Data were acquired using
two GoPro Hero 4 Black action cameras with image dimensions
of 3000 x 2250 pixels, focal length of 2.77um and pixel size of
1.55um. The dataset was captured in a near-shore underwater
site at depths varying from 0.5 to 2 meters. No artificial light
sources were used. Due to the wind, the turbulent surface of the
water created dynamic sun flicker (caustics) on the seabed.
Tests were performed using selected small datasets of different
areas and depths over the test site. Five different datasets were
used. One of them (the fifth in Figure 3, dataset 5), consists of
video frames from the same camera, therefore image, i.e. frame
dimensions are smaller: 1920 x 1080 pixels.
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3. APPLICATIONAND RESULTS

In Figure 3, results of the caustics correction algorithm are
presented over a number of images. There, the original RGB
images (uncorrected images), which contain caustics of varying
characteristics, are presented in the first column, while the
images which were processed using the network and then
histogram matched to the colour transferred image (corrected ct
images) are presented in the middle column. Finally, in the right
column, the caustic-free images which were processed using the
network and then histogram matched to the original image are
shown (corrected orig. images).

As it is obvious, in most of the datasets, the caustics have been
strongly reduced and therefore further processing with SfM-
MV techniques is possible.
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Figure 3. The five different datasets used: on the first row, an image from dataset 1, of the following rows, images from the
respective datasets 2, 3, 4 and 5. Left column: The original RGB images, which contain caustics of varying characteristics. Middle
column: The images which were processed using the network and then histogram matched to the colour transferred image. Right
column: The caustic-free images which were processed using the network and then histogram matched to the original image.
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Apart from the visual evaluation of the results and their 3
histograms comparison, the effectiveness of the applied method
on caustics removal is evaluated by several tests for key point
extraction and matching and 3D reconstruction through SfM-
MVS processes. 3D reconstruction was tested in Agisoft’s

Photoscan software while for key point matching, Agisoft’s 150 .
Photoscan software and other descriptors such as SIFT (Lowe,
1999) and SURF (Bay et al., 2006) were used. Main goal of this T ]
evaluation is to investigate how the caustics affect the matching sk )
process and the 3D reconstruction in order to extract valuable
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Together with the visual inspection and evaluation of the caustic
corrected imagery, the histograms of the five examples
presented in Figure 3 are shown in Figure 4. There, the

histogram of the green channel of the uncorrected image is ey i

plotted in magenta colour, the histogram of the green channel of

the corrected ct image is plotted in yellow colour and finally, T i
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is plotted with green colour. In the red rectangular on each ooy i

histogram, the peak around 250-255 representing the caustics . . . . }
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Figure 4. The respective histograms of the example images
presented in Figure 3.

As it is observed, this peak does not exist in yellow and green
histograms, which means that the caustics effect is strongly
removed. Another fact observed is that in all of the cases, the
final corrected image is darker than the initial one, since the
majority of the brightness values are moved to the left.

4.2 Key point matching

The goal of this performed tests was to evaluate the effect of the
caustics removal approach on SfM processing. For that, a
commercial software performing SfM-MVS was used, the
Agisoft’s Photoscan as well as other key point descriptors such
as SIFT (Lowe, 1999) and SURF (Bay et al., 2006). In the tests
performed using the Agisoft’s Photoscan, an image pair of the
five different datasets was inserted and the alignment step was
performed. Regarding the key point detection and matching,
using the in-house implementations, the following procedure
was followed, using exactly the same image pairs.

Feature Detection and Matching: Firstly, the key points were
detected on the imagery. Scale Invariant Feature Transform
(SIFT) (Lowe, 2004) extracts features invariant to image scale,
rotation and translation and partially invariant to illumination
changes. Speeded Up Robust Features (SURF) (Bay et al.,

2008) is based on the assessment of the Hessian matrix. SURF
also combines both detection and description but it outperforms
SIFT in terms of speed. Then, the similar kinds of features were
identified in the scene. The detected features on the first image
were then matched to the corresponding features on the second
image and a mapping of these features between these two
images was stored in a vector. This matching is based on n-
space Euclidean distance, and performed both from left-to-right
and right-to-left for redundancy.

Filtering of Matched points: Finally, the filtering of these
matched points took place. In feature matching, several blunders
might occur. The RANSAC algorithm is utilized to identify the
inliers of the obtained point correspondences. The algorithm
takes all the matched points as input, formulates a mathematical
model that incorporates the majority of the points, and filters
out the remaining points which are considered as outliers
(Fischler and Bolles, 1987). To accomplish that, the
fundamental matrix is computed and the measure for
thresholding inliers points is the distance from the epipolar line.
For this paper, the maximum distance from a point to an
epipolar line in pixels, beyond which the point is considered an
outlier was set at 3 pixels and the desirable level of confidence
(probability) that the estimated matrix is correct to 99%. At the
end of this step, a set of matched points is found in the given
scenes. Results of the matching process are given in Table 1.
There, the total matched points and the valid ones —the output of
the RANSAC filtering- are presented.

Figure 5. The matched points of an image pair from dataset 1 in
Agisoft’s Photoscan software.

As demonstrated in Figure 5, even the total matches are too
many and it is not clear immediately, whether the corrected
orig. image pair has more valid matches than the uncorrected
one. This is also observed in most of the cases of Table 1.
Regarding SIFT and SURF results, two image pairs with their
matches are presented in Figure 6 and Figure 7. In both figures,
the left column contains SIFT results while the right column,
SURF results. The first row contains the uncorrected image
pairs, the second one the corrected ct image pairs and the third
one the corrected orig. image pairs of the caustics free images.
During the performed tests, it was decided not to evaluate the
number of the total and valid matches only, but also evaluate the
geometry of the matches, since some valid results of the
RANSAC filtering are still matching the wrong points. Taking
into account the above, one can observe in Figures 6 and 7 that
the image pairs of the uncorrected imagery have a lot of
intersecting matches, a phenomenon that is eliminated in the
image pairs of the caustics free imagery (corrected ct image and
corrected orig. image). This happens to all the tested datasets,
however, for matter of space in this paper only the results of the
dataset 1 and dataset 3 are presented. However, the matching
results of all the datasets are presented in Table 1.
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Figure 6. SIFT (left) and SURF (right) matched points on the original uncorrected imagery (first row), the corrected ctimagery
(second row) and the corrected orig. imagery (third row) of the dataset 1.

Figure 7. SIFT (left) and SURF (right) matched points on the original uncorrected imagery (first row), the corrected ct imagery
(second row) and the corrected orig. imagery (third row) of the dataset 3.
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Photoscan SIFT SURF
Total Valid Total Valid Total Valid

Uncorrected images 1345 1303 4041 66 1923 40

Dataset 1 Corrected ct images 1410 1379 3508 57 866 26
Corrected orig. images 1423 1399 3951 66 1505 45

Uncorrected images 741 736 3266 57 1695 41

Dataset 2 Corrected ct images 599 587 2268 41 471 21
Corrected orig. images 597 588 3136 51 1157 28

Uncorrected images 1164 1120 4129 61 1611 39

Dataset 3 Corrected ct images 1206 1168 2352 44 164 14
Corrected orig. images 1244 1214 3676 62 810 28

Uncorrected images 1498 1428 3691 57 1741 36

Dataset 4 Corrected ct images 1476 1301 3606 60 1394 34
Corrected orig. images 1473 1437 3567 60 1533 36

Uncorrected images 432 412 1067 37 645 31

Dataset 5 Corrected ct images 277 271 1059 39 245 22
Corrected orig. images 306 296 1141 43 544 31

Table 1. The results of the matching process for all the datasets

There, in the 66% of the cases, the corrected orig. images are
having more matches than the uncorrected images. However,
even in the cases where the original imagery has more matches,
these matches are wrong, compared with the respective ones on
the caustics free images. The above results, suggest that the
caustics effect, indeed affects the matching process in most of

The performed experiments, suggest that the caustics removal
and hence the processing of the imagery do not affect the
generated point cloud in a negative way but they rather improve
point cloud quality by slightly reducing its roughness and
slightly increases the generated points by 2-3%, as it is also
demonstrated in Figure 8 and Figure 9.

the cases. In the SIFT and SURF tests, results suggest that the
caustic free images will facilitate a better image matching
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reconstruction. ' datésett
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At each site/project, 3 different blocks were created: (i) one 35 :
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Figure 8. The total number of points of each dataset for the 3
processing stages.

corrected orig. image:

with the uncorrected imagery, (ii) one with the corrected ct
imagery and (iii) one with the corrected orig. imagery. All three
channels of the images were used for these processes. For the
created projects of each test site, the alignment parameters of
the original (uncorrected) dataset were adopted to all other
datasets. This ensured that the alignment parameters will not
affect the 3D reconstruction and only the effect of the caustics
on this specific process will be evaluated. Subsequently, 3D
dense point clouds of medium quality and density were created
for each data set. No filtering during this process was
performed in order to get the total number of dense point
clouds, as well as the noise. It should be noted that medium
quality dense point cloud means that the initial images’
resolution was reduced by a factor of 4 (2 times for each side), 2F
in order to be processed by the SfM-MVS software. The
resulting point clouds were evaluated in terms of total number
of points and roughness, a metric that indicates also the noise on
the point cloud.
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Figure 9. The mean roughness of the point cloud of each dataset
for the 3 processing stages.
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Total number of points: Here all the 3D points of the cloud
were measured in order to get the total number, including any
outliers and noise (Girardeau-Montaut, 2018).

It is considered important that the unfiltered point clouds of the
corrected imagery, having more points, have also less noise, as
it is illustrated in Figure 10.

Roughness: For each point, the roughness value is equal to the
distance between this point and the best fitting plane computed
based on its nearest neighbours (Girardeau-Montaut, 2018).
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Figure 10. The unfiltered point clouds of the dataset 1. (a) the
resulted point cloud using the uncorrected images, (b) the
resulted point cloud using the corrected ct images and (c) the
produced point cloud using the corrected orig. images.

5. CONCLUDING REMARKS

The implemented novel approach has been extensively tested on
five real datasets of a shallow underwater site containing
caustics. Test and evaluation indicate that caustics affect the key
point detection and matching processes as well as 3D
reconstruction and their removal is legitimate.

Results suggest that the implemented novel approach for
caustics removal performs quite well in intense caustics, like the
ones that are present in the dataset. As can be seen from the
results, even with these relatively small networks and small
synthetic training dataset we were able to transfer the learning
to real world data quite effectively. As it is observed, in 66% of
the cases, the total number of matches is increasing when the
images are processed by the algorithm while in almost all of the
cases the matches on the corrected orig. imagery are more
reliable, even this is not the case for the corrected ct imagery.
Most important is that the more successful the caustics removal
is, the more valid matches are appearing in the stereo pair. Since
the caustics have been successfully removed, further processing
with structure-from-motion and multi-view stereo techniques
becomes possible for a number of applications including
underwater archaeology.
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